Processing In-memory realization using Quantum Dot Cellular Automata
نویسندگان
چکیده
The present manuscript deals with the realization of Processing In-memory (PIM) computing architecture using Quantum Dot Cellular Automata (QCA) and Akers array. The PIM computing architecture becomes popular due to its effective framework for storage and computation of data in a single unit. Here, we illustrate two input NAND and NOR gate with the help of QCA based Akers Array as case study. The QCA flip flop is used as a primitive cell to design PIM architecture. The results suggested that, both the gate have minimum power dissipation. The polarization results of proposed architecture suggested that the signals are in good control. The foot print of the primitive cell equals to 0.04 μm , which is smaller than conventional CMOS primitive cell. The combination of QCA and Akers array provides many additional benefits over the conventional architecture like reduction in the power consumption and feature size, furthermore, it also improves the computational speed.
منابع مشابه
Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach
This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملA Processing in Memory Realization Using Quantum Dot Cellular Automata (QCA): Proposal and Implementation
Processing in Memory (PIM) is a computing paradigm that promises enormous gain in processing speed by eradicating latencies in the typical von Neumann architecture. It has gained popularity owing to its throughput by embedding storage and computation of data in a single unit. We portray implementation of Akers array architecture endowed with PIM computation using Quantum-dot Cellular Automata (...
متن کاملNovel Subtractor Design Based on Quantum-Dot Cellular Automata (QCA) Nanotechnology
Quantum-dot cellular automaton (QCA) is a novel nanotechnology with a very different computational method in compared with CMOS, whereas placement of electrons in cells indicates digital information. This nanotechnology with specifications such as fast speed, high parallel processing, small area, low power consumption and higher switching frequency becomes a promising candidate for CMOS tec...
متن کاملA Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata
The quantum-dot cellular automata (QCA) is considered as an alternative tocomplementary metal oxide semiconductor (CMOS) technology based on physicalphenomena like Coulomb interaction to overcome the physical limitations of thistechnology. The decoder is one of the important components in digital circuits, whichcan be used in more comprehensive circuits such as full adde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.05065 شماره
صفحات -
تاریخ انتشار 2016